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1 Chapter 1: Complex Numbers

Proposition 1.1 (Basic Identities and Inequalities). Let z, z1, z2, z3 ∈ C. Let z = x + iy =
r(cos θ + i sin θ) and zk = xk + iyk = rk(cos θk + i sin θk).

|z| = |z| =
√
zz =⇒ |z|2 = zz

Re z =
1

2
(z + z)

Im z =
1

2i
(z − z)

z1 + z2 = z1 + z2 (conjugation is a field automorphism)

z1z2 = z1z2

|z1z2| = |z1||z2|
|z1 + z2| ≤ |z1|+ |z2| (triangle inequality)

|z1 + z2 + . . .+ zn| ≤ |z1|+ |z2|+ . . .+ |zn| (generalized triangle inequality)

|z1 − z2| ≥ |z1| − |z2|
|z1 + z2|2 + |z1 + z2|2 = 2

(
|z1|2 + |z2|2

)
(parallelogram equality)

z1z2 = r1r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
arg z = arg(z−1) = − arg z

zn = rn(cosnθ + i sinnθ) for n ∈ Z (De Moivre’s Formula)

z1/n = r1/n

(
cos

θ + 2πk

n
+ i sin

θ + 2πk

n

)
for n ∈ N and k = 0, 1, . . . , n− 1

Proposition 1.2. Let z1, z2 ∈ C \ {0}. Then they are positive multiples of each other if and
only if z1z2 is real and positive.

Proposition 1.3. Let p(x) be a polynomial with real coefficients. If p(z) = 0 for some
z ∈ C, then p(z) = 0. (That is, the Galois group of C/R is just Z/2Z, the identity and
complex conjugation.)

Proposition 1.4. Let z ∈ C \ {1}. Then

n∑
k=0

zk = 1 + z + z2 + . . .+ zn =
zn+1 − 1

z − 1

Proposition 1.5. The sum of the nth roots of 1 equals zero for n ≥ 2.

2 Chapter 2: Complex Differentiation

Proposition 2.1 (Basic Properties of Complex Differentiation). Let f and g be complex-
valued functions defined on an open set G.

1. If f is differentiable at z0, then f is continuous at z0.
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2. (Leibniz rule) If f and g are differentiable at z0, then f + g and fg are differentiable
at z0, and (f + g)′(z0) = f ′(z0) + g′(z0) and (fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0).

3. If f and g are differentiable at z0 and g(z0) 6= 0, then f/g is differentiable at z0. (There
is a quotient rule, but just apply the product rule to f 1

g
.)

4. (Chain rule) If f is differentiable at z0 and g is differentiable at f(z0), then the com-
position g ◦ f is differentiable at z0 and (g ◦ f)′(z0) = g′(f(z0))f ′(z0).

Proposition 2.2. Polynomial functions are holomorphic.

Proposition 2.3. Rational functions are holomorphic everywhere that their denominator is
nonzero.

Proposition 2.4 (Cauchy-Riemann Equations). Let f(z) = f(x + iy) = u(x, y) + iv(x, y)
be a complex function defined on an open set G containing z0. Then f is differentiable at z0

if and only if u, v are differentiable at z0 and

∂u

∂x
(z0) =

∂v

∂y
(z0) and

∂u

∂y
(z0) = −∂v

∂x
(z0)

In that case,

f ′(z0) =
∂u

∂x
(z0) + i

∂v

∂x
(z0) =

∂v

∂y
(z0)− i∂u

∂y
(z0)

Proposition 2.5. In polar form, the Cauchy-Riemann equations are

r
∂u

∂r
=
∂v

∂θ

∂u

∂θ
= −r∂v

∂r

Proposition 2.6. Let the complex-valued function f = u+ iv be defined in the open subset
G ⊂ C, and assume that u and v have first partial derivatives in G. Then f is differentiable
at each point where those partial derivatives are continuous and satisfy the Cauchy-Riemann
equations.

Proposition 2.7. Let f be holomorphic in an open disk D. If any of the following hold for
all z ∈ D, then f is constant in D: f ′(z) = 0, f(z) ∈ R, |f | = c, arg f = c.

Proposition 2.8. Let f be holomorphic on the open set G. Then f(z) is holomorphic on
{z : z ∈ G}.

Proposition 2.9. A function f is differentiable at z0 if and only if ∂
∂z

(z0) = 0.

Proposition 2.10. If f is differentiable at z0, then f ′(z0) = ∂f
∂z

(z0).

Proposition 2.11. Let f be holomorphic on an open set G and let γ : I → G be a curve
such that γ is differentiable at t0, and let z0 = γ(t0). Then the curve f ◦ γ : I → f(G) is
differentiable at t0 and

(f ◦ γ)′(t0) = f ′(γ(t0))γ′(t0) = f ′(z0)γ′(t0)
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Proposition 2.12 (Holomorphic Maps are Conformal where Derivative is Nonzero). Let f
be holomorphic on an open set G and let z0 ∈ G such that f ′(z0) 6= 0. Let γ1, γ2 be curves
such that γ1(t1) = γ2(t2) = z0, and γj is regular at tj. Then the angle between f ◦ γ1 and
f ◦ γ2 is equal to the angle between γ1 and γ2.

Proposition 2.13 (Conformal implies Holomorphic). Let f : G→ C where G ⊂ C is open,
and suppose that Re f and Im f have continuous first partial derivatives. If f is conformal
at each z0 ∈ G, then f is holomorphic and f ′ 6= 0 in G.

Proposition 2.14. Let f : G → C. Then f is holomorphic if and only if its real and
imaginary parts are harmonic.

Proposition 2.15. Holomorphic functions are harmonic.

Proposition 2.16. Let u, v : G→ C where G ⊂ C is open and suppose u, v are of class C2.
Then u, v are harmonic conjugates if and only if u+ iv is holomorphic.

3 Chapter 3: Linear Fractional Transformations

Proposition 3.1. The map CP1 → C given by [z1, z2] 7→ z1
z2

is well-defined, and is a bijection.
(The RHS is taken to be ∞ when z2 = 0.)

Proposition 3.2. A linear fractional transformation gives a bijection C→ C.

Proposition 3.3. Linear fractional transformations form a group under function compo-
sition. That is, LFTs are closed under composition and the inverse of a linear fractional
transformation is a linear fractional transformation.

Proposition 3.4. Let φ1, φ2 be linear fractional transformations induced by matrices M1,M2

respectively. Then φ1φ2 is induced by M1M2. If φ is a linear fractional transformation
induced by M , then φ−1 is induced by M−1. That is, the map[

a b
c d

]
7→
(
z 7→ az + b

cz + d

)
from GL(2,C) to the group of LFTs is a group homomorphism. The kernel is

H = {λI2 : λ ∈ C \ {0}}

where I2 is the identity of GL(2,C). Thus the LFT group is isomorphic to

GL(2,C)/H

Proposition 3.5. Every linear fractional transformation can be written as a product of a
dilation, rotation, translation, and inversion. That is, the dilations, rotations, translations,
and the inversion map generate the group of linear fractional transformations.

Proposition 3.6. Linear fractional transformations are conformal. Consequently, they are
holomorphic and have a first derivative that never vanishes.
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The next lemma seems very out of place, since it is purely topological. However, it is very
useful when dealing with linear fractional transformations.

Lemma 3.7. Let X be a topological space, and A ⊂ X. Let φ : X → X be a homeomorphism
so that φ(A) = A and φ|A : A → A is a homeomorphism. Then φ(∂A) = ∂A and φ|∂A :
∂A→ ∂A is a homeomorphism.

Corollary 3.8. Let φ be a linear fractional transformation, and let C be a clircle dividing C
into two disconnected regions X, Y . Since φ(C) is a clircle, it divides C into two disconnected

regions X̃, Ỹ . Then φ|X is a bijection X → X̃ or a bijection X → Ỹ .

Intuitively speaking, the above result says that a linear fractional transformation that maps
a given clirlce to another clircle must map one “side” of the clircle in the domain to one
“side” of the image clircle. (Where “side” refers to the inside/outside if it is a circle, and
“side” refers to top/bottom or right/left if it is a line.)

Proposition 3.9. A linear fractional transformation has exactly one or two fixed points.

Proposition 3.10. Let z1, z2, z3 be distinct poins in C, and w1, w2, w3 be distinct points in
C. There is a unique linear fractional transformation φ so that φ(zi) = wi.

Proposition 3.11. Let z1, z2, z3, z4 be distinct points in C and φ a linear fractional trans-
formation. Then

(φz1, φz2;φz3, φz4) = (z1, z2; z3, z4)

Proposition 3.12. All translations except for translation by zero are mutually conjugate.

Proposition 3.13. Let f be a fractional linear transformation with a unique fixed point at
∞. Then f is a translation.

Proposition 3.14. A linear fractional transformation with exactly one fixed point is conju-
gate to a translation.

Proposition 3.15. The image of a clircle under a linear fractional transformation is a
clircle.

Proposition 3.16. Let z1, z2, z3, z4 be distinct points in C. They all lie on a clircle if and
only if the cross ratio (z1, z2; z3, z4) is real.

Proposition 3.17. A clircle is uniquely determined by three points.

4 Chapter 4: Elementary Functions

Proposition 4.1. Let z1, z2 ∈ C. Then ez1ez2 = ez1+z2.

Proposition 4.2. The complex exponential is holomorphic. Its derivative is itself.

Proposition 4.3. If f : C→ C is holomorphic and f ′ = f , then f is a constant multiple of
ez.
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Proposition 4.4. All complex trigonometric and hyperbolic functions are holomorphic
everywhere they are defined.

Proposition 4.5. Let z ∈ C. Then

cos z = cosh iz sin z = −i sinh iz

Proposition 4.6. Let z ∈ C \ {0}. If w is a logarithm of z, then w = ln |z|+ i arg z.

Proposition 4.7. If f is holomorphic on a disk containing z0 and f(z0) 6= 0, then there is
a branch of log f on a disk containing z0.

Proposition 4.8. Let G be an open connected subset of C \ {0}. There exists a branch of
arg in G if and only if there exists a branch of log in G.

Proposition 4.9. If α is a branch of arg z in G, then α + 2πn is another branch for any
n ∈ Z. Conversely, if α1, α2 are branches of arg in G, then they differ by an integer mulitple
of 2π.

Proposition 4.10. If ` is a branch of log z in G, then ` + 2πin is another branch for any
n ∈ Z. Conversely, any two branches of ` in G differ by an integer multiple of 2πi.

Proposition 4.11. Let ` be a branch of log z in the open connected set G. Then ` is
holomorphic and `′(z) = 1

z
.

Proposition 4.12. If there is a branch of log f in G, then it is a holomorphic function and
its derivative is f ′

f
.

Proposition 4.13. If h is a branch of f 1/n, then h is holomorphic and h′

h
= f ′

nf
.

5 Chapter 5: Power Series

Proposition 5.1. If
∑∞

n=0 cn converges then limn→∞ cn = 0.

Proposition 5.2. Let z ∈ C. The geometric series
∑∞

n=0 z
n converges to 1

1−z if |z| < 1 and
diverges for |z| ≥ 1.

Proposition 5.3. If
∑∞

n=0 cn converges, then∣∣∣∣∣
∞∑
n=0

cn

∣∣∣∣∣ ≤
∞∑
n=0

|cn|

Proposition 5.4. If a series converges absolutely, then it converges.

Proposition 5.5. A series of functions converges uniformly on S if and only if it is uni-
formly Cauchy on S.

Proposition 5.6. Let gn be a sequence of complex valued functions that converges uniformly
on G. Then gn converges uniformly on any subset of G.
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Proposition 5.7. Let
∑∞

n=0 an(z − z0)n be a power series. The region of convergence is
either {z0}, C, or an open disk |z − z0| < R, possibly including points on the boundary of
that disk. If it converges on the disk |z − z0| < R, then it converges absolutely and locally
uniformly.

Proposition 5.8. Let
∑∞

n=0 anz
n and

∑∞
n=0 bn be power series with respective radii of con-

vergence R1, R2. If there exists M > 0 so that |an| ≤M |bn| for all but finitely many n, then
R1 ≤ R2.

Proposition 5.9. Let an be a sequence of real numbers. Then lim an exists if and only if
lim sup an = lim inf an. If it exists, then lim an = lim sup an = lim inf an.

Proposition 5.10. Let an, bn be real sequences. Then

lim sup(an + bn) ≤ lim sup an + lim sup bn

provided the sum on the right is well-defined (that is, it isn’t ∞ −∞). If either sequence
converges, then we get equality.

Proposition 5.11. Let an, bn be positive real sequences. Then

lim sup(anbn) ≤ (lim sup an)(lim sup bn)

as long as the product on the right is meaningful (i.e. not 0·∞). If either sequence converges,
we get equality.

Proposition 5.12 (Cauchy-Hadamard Theorem). The radius of convergence of∑∞
n=0 an(z − z0)n is

1

lim supn→∞ |an|1/n

Proposition 5.13. Let
∑∞

n=0 anz
n and

∑∞
n=0 bn be power series with respective radii of

convergence R1, R2. The radius of convergence of
∑∞

n=0(an + bn)zn is at least min(R1, R2).
The radius of convergence of

∑∞
n=0 anbnz

n is at least R1R2 (as long as R1R2 isn’t 0 · ∞).

Proposition 5.14. A power series
∑∞

n=0 anz
n and its termwise derivative

∑∞
n=1 nanz

n−1

have the same radius of convergence.

Proposition 5.15 (Ratio Test). If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists, then the above limit is the radius of convergence of

∑∞
n=0 an(z − z0)n.

Proposition 5.16. Suppose that the power series
∑∞

n=0 an(z − z0)n has positive radius of
convergence R. Then the function f represented by the above power series in the disk
|z−z0| < R is holomorphic, and f ′ is represented in the same disk by the termwise derivative∑∞

n=1 nan(z − z0)n−1.

Proposition 5.17. A function represented by a power series in a disk |z − z0| < R is
infinitely differentiable on that disk.

7



Proposition 5.18. The power series
∞∑
n=0

zn

n!

has infinite radius of convergence, and represents the function ez on all of C.

Proposition 5.19. Let
∑∞

n=0 an(z − z0)n and
∑∞

n=0 bn(z − z0)n be power series with the
same center, both with positive radii of convergence R1, R2 respectively. Then their Cauchy
product converges in the disk |z−z0| < min(R1, R2). The function represented by the Cauchy
product is the product of functions represented by the original series. That is,

∞∑
n=0

(
n∑
k=0

akbn−k

)
(z − z0)n =

(
∞∑
n=0

an(z − z0)n

)(
∞∑
n=0

bn(z − z0)n

)

6 Chapter 6: Complex Integration

Proposition 6.1 (Linearity of Complex Integral). Let φ1, φ2 : [a, b] → C be piecewise con-
tinuous and let c1, c2 ∈ C. Then∫ b

a

c1φ1(t) + c2φ2(t)dt = c1

∫ b

a

φ1(t)dt+ c2

∫ b

a

φ2(t)dt

Proposition 6.2 (Fundamental Theorem of Calculus). Let φ : [a, b] → C be piecewise C1.
Then ∫ b

a

φ′(t)dt = φ(b)− φ(a)

Proposition 6.3. Let φ : [a, b]→ C be piecewise continuous. Then∣∣∣∣∫ b

a

φ(t)dt

∣∣∣∣ ≤ ∫ b

a

|φ(t)|dt

Proposition 6.4 (Linearity of Complex Line Integral). Let G1, G2 ⊂ C and f1 : G1 → C
and f2 : G2 → C. Let γ : [a, b]→ G1 ∩G2 be piecewise C1, and c1, c2 ∈ C. Then∫

γ

c1f1(z) + c2f2(z)dz = c1

∫
γ

f1(z)dz + c2

∫
γ

f2(z)dz

Proposition 6.5 (Partitioning of Curves of a Line Integral). Let G ⊂ C and f : G → C.
Let γ : [a, c]→ G be piecewise C1, and let b ∈ [a, c]. Define γ1 = γ|[a,b] and γ2 = γ|[b,c]. Then∫

γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz

Proposition 6.6. Let G ⊂ C be open, and let f : G→ C be holomorphic, and assume that
f ′ is continuous. Let γ : [a, b]→ G be a piecewise C1 curve. Then∫

γ

f ′(z)dz = f(γ(b))− f(γ(a))

In particular, if γ is a closed curve, then the above integral is zero.
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Proposition 6.7. Let z0 ∈ C and r > 0. Define γ : [0, 2π] → C by γ(t) = z0 + reit. (Note
that γ parametrizes the circle |z − z0| = r traversed once clockwise.) Then∫

γ

1

(z − z0)n
dz =

{
2πi n = 1

0 n 6= 1

Proposition 6.8. Let G ⊂ C be open and f : G→ C and let γ : [a, b]→ G be piecewise C1.
Let γ1 = γ ◦ β be a reparametrization of γ. Then∫

γ

f(z)dz =

∫
γ1

f(z)dz

Because of this equality, when speaking of an integral of a function over a curve, one is free to
choose a convenient parametrization to compute the integral. (Note: Reversing the direction
of a curve is NOT a reparametrization.)

Proposition 6.9. Reversing the direction of a curve changes the sign of the integral over
that curve. That is, ∫

−γ
f(z)dz = −

∫
γ

f(z)dz

Proposition 6.10. Let G ⊂ C and f : G→ C be continuous. Let γ : [a, b]→ G be piecewise
C1. Let M be the maximum of |f | on γ, that is,

M = max{|f(γ(t))| : t ∈ [a, b]}

Note that M exists by the extreme value theorem becase the trace of γ is compact. Then∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ML(γ)

where L(γ) is the length of γ.

Proposition 6.11 (Passing a Limit through an Integral). Let G ⊂ C and let fn : G → C
be a sequence of continuous functions. Let γ : [a, b] → G, and suppose that fn converges
uniformly to f on γ([a, b]). Then

lim
n→∞

∫
γ

fn(z)dz =

∫
γ

lim
n→∞

fn(z) =

∫
γ

f(z)dz

WARNING: Uniform convergence is necessary!

7 Chapter 7: Core Versions of Cauchy’s Theorem

Proposition 7.1 (Cauchy’s Theorem for Triangles). Let G ⊂ C be open, and let f : G→ C
be holomorphic. Let T be a triangle in C such that T and its interior are contained in G.
Then ∫

T

f(z)dz = 0

Note that this is subsumed by later, more general, versions of Cauchy’s Theorem.
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Proposition 7.2 (Cauchy’s Theorem for a Star-Shaped Region). Let G ⊂ C be star shaped
and open. Let f : G→ C be holomorphic. Let γ : [a, b]→ G be a piecewise C1 curve. Then∫

γ

f(z)dz = 0

Note that this is subsumed by later, more general, versions of Cauchy’s Theorem.

Proposition 7.3. Let G ⊂ C be open and star shaped, and let f : G → C be holomorphic.
Then f has a primitive in G. (Later, we will only need G to be simply connected.)

Proposition 7.4 (Cauchy’s Formula for a Circle). Let C be a counterclockwise oriented
circle and let f be holomorphic on an open set containing C and its interior. Then

f(z) =
1

2πi

∫
C

f(w)

w − z
dw

for z in the interior of C. (That is, we can recover the value of f at the center of a circle
from the values on the circle.)

Proposition 7.5 (Mean Value Property). Let f be holomorphic in the disk |z − z0| < R.
Then for 0 < r < R,

f(z0) =
1

2π

∫ 2π

0

f(z0 + reit)dt

That is, the value of f at the center of the circle |z − z0| = r is the average of the values
along the circle.

Proposition 7.6 (Mean Value Property, 2). Let f be holomorphic in the disk |z − z0| < R.
Then for 0 < r < R,

f(z0) =
1

πr2

∫∫
|z−z0|<r

f(z) dA

That is, the value of f at the center of the disk |z − z0| < r is equal to the average of the
values of f on that disk.

Proposition 7.7 (Holomorphic functions have local power series representations). Let f be
be holomorphic on an open set containing the disk |z− z0| < r. Then there is a power series∑∞

n=0 an(z − z0)n representing f in that disk. In particular, f is represented by its Taylor
series:

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n

on |z − z0| < R.

Proposition 7.8 (Cauchy Integral Formula). The derivative of a holomorphic function is
holomorphic. In particular, if f is holomorphic on G, then for |z− z0| < r < dist(z0, G

c) we
have

f (n)(z) =
n!

2πi

∫
Cr

f(w)

(w − z)n+1
dw

Consequently, if f has the local power series representation
∑∞

n=0 an(z − z0)n, then

an =
f (n)(z0)

n!
=

1

2πi

∫
Cr

f(w)

(w − z0)n+1
dw
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Proposition 7.9 (Converse of Goursat’s Lemma, sometimes called Morera’s Theorem). Let
f be a continuous complex valued function on an open subset G of C. If

∫
T
f(z)dz = 0 for

every triangle T with interior contained in G, then f is holomorphic.

Proposition 7.10 (Morera’s Theorem for Rectangles). Let f be a continuous complex valued
function on an open subset G of C. If

∫
R
f(z)dz = 0 for every rectangle R with interior

contained in G, then f is holomorphic.

Proposition 7.11 (Liouville’s Theorem). If f is entire and bounded, then it is constant.

Proposition 7.12 (Fundamental Theorem of Algebra). Every nonconstant polynomial with
complex coefficients can be factored over C into linear factors.

Proposition 7.13. Let f : G → C be holomorphic, and let z0 ∈ G be a zero of order m.
Then the Taylor series of f centered at z0 is

∞∑
n=m

an(z − z0)n

Proposition 7.14. Zeroes of finite order of holomorphic functions are isolated. That is, if
z0 is a zero of order m of a holomorphic function f , then there exists r > 0 so that f(z) 6= 0
for z ∈ B(z0, r).

Proposition 7.15. If f : G → C has a zero of infinite order at z0, then f is the zero
function on the connected component of G containing z0.

Proposition 7.16. Let f : G → C be holomorphic with G connected, with f not the zero
function. Then each zero of f is of finite order, and f−1(0) has no limit points in G.

Proposition 7.17. Let f : G→ C be holomorphic and have a zero of order m at z0. Then
there is a branch of f

1
m in a disk centered at z0.

Proposition 7.18 (Identity Principle). Let f, g : G→ C be holomorphic with G connected.
If f(z) = g(z) for all z in a subset of G that has a limit point in G, then f = g.

Proposition 7.19 (Weierstrass Convergence Theorem). Let G ⊂ C be open and let {fk}∞k=1

be a sequence of holomorphic functions in G that converges locally uniformly in G to the
function f . Then f is holomorphic, and for each n ∈ N, the sequence {f (n)

k }∞k=1 converges
locally uniformly to f (n). That is, the locally uniform limit of holomorphic functions is
holomorphic.

Proposition 7.20 (Maximum Modulus Principal). Let f be a nonconstant holomorphic
function in the open connected set G ⊂ C. Then |f | does not attain a local maximum in G.
As a consequence, if K ⊂ G is compact, then |f | attains its maximum over K only at points
on the boundary of K.

Proposition 7.21. Let f be a nonconstant holomorphic function in the connected open
subset G ⊂ C. Then |f | can attain a local minimum only at a zero of f .
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Proposition 7.22 (Schwarz’s Lemma). Let f be a holomorphic map of the open unit disk
to itself so that f(0) = 0. Then |f(z)| ≤ |z| for all z in the disk. The inquality is strict at
all points except 0, unless f is a rotation, i.e. f(z) = λz where |λ| = 1.

Proposition 7.23 (Existence of a Harmonic Conjugate on a Convex Set). Let u be a real-
valued harmonic function in the convex open subset G ⊂ C. Then there is a holomorphic
function g : G → C so that u = Re g. The function g is unique up to addition of an
imaginary constant. (That is, Im g is a harmonic conjugate to u.)

Proposition 7.24. Harmonic functions are infinitely differentiable.

Proposition 7.25 (Mean Value Property for Harmonic Functions). Let u : G → C be
harmonic with G ⊂ C open. Let z0 ∈ G. Then

u(z0) =
1

2π

∫ 2π

0

u(z0 + reit)dt

for 0 < r < dist(z0, G
c).

Proposition 7.26 (Identity Principle for Harmonic Functions). Let G ⊂ C be open and
connected. Let u, v : G→ C be harmonic functions that agree on a nonempty open subset of
G. Then u = v.

Proposition 7.27 (Maximum Modulus Priniple for Harmonic Functions). Let G ⊂ C be
open an connected. Let u : G → R be a nonconstant harmonic function. Then u does not
attain a local maximum in G.

8 Laurent Series and Isolated Singularities

Note: Prof Schenker presented this material in a different order in class, giving a different
definition for singularities, but it all turns out to be logically equivalent.

Proposition 8.1 (Generalized Cauchy-Hadamard Theorem). Consider the Laurent series∑∞
n=−∞ an(z − z0)n and let

R1 = lim sup
n→∞

|a−n|1/n R2 =
1

lim supn→∞ |an|1/n

If R1 < R2, then the Laurent series converges absolutely and locally uniformly in the annulus
R1 < |z − z0| < R2.

Proposition 8.2. Consider the Laurent series
∑∞

n=−∞ an(z − z0)n and let

R1 = lim sup
n→∞

|a−n|1/n R2 =
1

lim supn→∞ |an|1/n

For z such that R1 < |z−z0| < R2 define f(z) =
∑∞

n=−∞ an(z−z0)n. Then f is holomorphic
on the annulus. In addition, for r satsifying R1 < r < R2, let Cr denote the circle |z−z0| = r,
then

an =
1

2πi

∫
Cr

f(z)

(z − z0)n+1
dz
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Proposition 8.3 (Cauchy’s Theorem for Concentric circles). Let f be holomorphic in the
annulus R1 < |z − z0| < R2, and for R1 < r < R2 let Cr be the circle |z − z0| = r oriented
counterclockwise. Then

∫
Cr
f(z)dz is independent of r (for R1 < r < R2.)

Proposition 8.4 (Cauchy’s Formula for an Annulus). Let f be holomorphic in the annulus
R1 < |z − z0| < R2, and for R1 < r < R2 let Cr be the circle |z − z0| = r oriented
counterclockwise. If R1 < r1 < |w − w0| < r2 < R2, then

f(w) =
1

2πi

∫
Cr2

f(z)

z − w
dz − 1

2πi

∫
Cr1

f(z)

z − w
dz

Proposition 8.5. Let f be holomorphic in the annulus R1 < |z − z0| < R2. Then f has a
Laurent series representation on that annulus.

Proposition 8.6 (Criterion for a Removable Singularity). Let f be holomorphic with an
isolated singularity at z0. Then f is bounded in some punctured disk with center z0 if and
only if z0 is a removable singularity.

Proposition 8.7 (Criterion for a Pole). Let f be holomorphic with an isolated singularity
at z0. If

lim
z→z0
|f(z)| =∞

then z0 is a pole of f .

Proposition 8.8 (Casorati-Weierstrass Theorem). Let f : G → C be holomorphic with an
essential isolated singularity at z0. Then for any w ∈ C, there is a sequence (zn)∞n=1 in G so
that

lim
n→∞

zn = z0 lim
n→∞

f(zn) = w

The above proposition says that functions behave very badly near essential singularities. It
says that not only does not limit as z → z0 of f(z) not exist, it actually can take ANY value
in C, for a suitably chosen path.

The following result was not proven in our class, but is included in the book for interest’s
sake.

Proposition 8.9 (Picard’s Theorem). Let f be holomorphic with an essential isolated sin-
gularity at z0. Then in any punctured disk centered at z0, the range of f includes every
complex value infinitely many times, with possibly one exception.

Proposition 8.10. Let f, g be holomorphic on an open set containing z0 and suppose g has
a simple zero at z0. Then resz0

f
g

= f(z0)
g′(z0)

.

Proposition 8.11 (Computing a Residue at a Pole). Let f be holomorphic on an open set
containing z0 and let f have a pole of order k at z0. Then

resz0 f =
1

(k − 1)!
lim
z→z0

dk−1

dzk−1

[
(z − z0)kf(z)

]
In particular, if z0 is a simple pole, (k = 1), then

resz0 f = lim
z→z0

(z − z0)f(z)

13



Proposition 8.12 (Baby Residue Theorem). Let f be holomorphic with an isolated singular-
ity at z0. Let C be a counterclockwise oriented circle centered at z0 so that f is holomorphic
on the punctured interior of C. Then∫

C

f(z)dz = 2πi resz0 f

We can rewrite this as

res z0f =
1

2πi

∫
C

f(z)dz

9 Cauchy’s Theorem

Proposition 9.1. Let φ : [a, b] → C \ {0} be continuous. Then there is a continuous
ψ : [a, b] → C \ {0} so that φ = eψ. Furthermore, ψ is unique up to addition integer
multiples of 2πi.

Proposition 9.2. Let φ : [a, b] → C \ {0} be piecewise C1. Let c be a value of log φ(a).
Then define ψ : [a, b]→ C \ {0} by

ψ(t) = c+

∫ t

a

φ′(s)

φ(s)
dx

Then ψ is continuous and φ = eψ.

Proposition 9.3. Let γ : [a, b]→ C be a piecewise C1 curve and f holomorphic on an open
set containing γ and nonvanishing on γ. Then

∆(log f, γ) =

∫
γ

f ′(z)

f(z)
dz

Proposition 9.4. Let γ : [a, b] → C be a piecewise C1 closed curve, and let z0 be a point
not in the trace of γ. Then

indγ(z0) =
1

2πi

∫
γ

1

z − z0

dz

Since the RHS is a continuous function of z0, and integer valued, it is constant on each
connected component of C \ γ([a, b]). In particular, the index must be zero on the unbounded
component.

Proposition 9.5. Let Γ =
∑

j njγj be a contour. Then

indΓ(z0) =
1

2πi

∫
Γ

1

z − z0

dz

Proposition 9.6 (The Separation Lemma). Let G ⊂ C be open, and let K ⊂ G be compact.
Then there is a simple contour Γ in G \K such that K ⊂ int Γ ⊂ G, and such that if f is
holomorphic in G, then

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0

dz
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Proposition 9.7 (Cauchy’s Theorem). Let G ⊂ C be open and let Γ be a contour with
interior contained in G, and let f : G→ C be holomorphic. Then∫

Γ

f(z)dz = 0

(Keep in mind that Γ doesn’t wind around anything outside G.)

Proposition 9.8. Let φ : [0, 1]× [0, 1]→ C \ {0} be continuous. Then there is a continuous
ψ : [0, 1] × [0, 1] → C such that φ = eψ. The function ψ is unique up to addition of integer
multiples of 2πi.

Proposition 9.9 (Homotopic Loops give Same Winding Number). Let G ⊂ C be open. Let
γ0, γ1 be closed piecewise C1 curves in G that are homotopic in G. Then indγ0(z) = indγ1(z)
for z ∈ C \G. (Note that it is important that z 6∈ G.)

Proposition 9.10 (Homotopy Version of Cauchy’s Theorem). Let G ⊂ C be open and let
f : G→ C be holomorphic. Let γ0, γ1 be closed piecewise C1 curves in G that are homotopic
in G. Then ∫

γ0

f(z)dz =

∫
γ1

f(z)dz

10 Residue Theorem and Riemann Mapping Theorem

Proposition 10.1. Every star shaped domain is simply connected.

Proposition 10.2 (Winding Number Criterion). Let G ⊂ C be a domain. Then G is simply
connected if and only if every contour Γ in G has winding number zero around every point
in C \G.

Proposition 10.3 (Cauchy’s Theorem for Simply Connected Domains). Let G ⊂ C be a
simply connected domain, and let f : G → C be holomorphic, and let Γ be a contour in G.
Then ∫

Γ

f(z)dz = 0

Note that this is a special case of the Residue Theorem.

Proposition 10.4 (Existence of Primitive Criterion). Let G ⊂ C be a domain. Then G is
simply connected if and only if every holomorphic function f : G→ C has a primitive.

Proposition 10.5 (Existence of Logarithms). Let G ⊂ C be a simply connected domain,
and let f : G→ C \ {0} be holomorphic. Then there is a branch of log f in G.

Proposition 10.6 (Existence of Harmonic Conjugates). Let G ⊂ C be a simply connected
domain, and let u : G → R be harmonic. Then u has a harmonic conjugate in G, which is
unique up to an additive constant.

Proposition 10.7 (Partial Equivalence of Definitions of Simply Connected). Let G ⊂ C be
a domain. If every closed curve in G is nullhomotopic, then G is simply connected. (The
converse is also true, but proven later, using the Riemann Mapping Theorem.)
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Proposition 10.8 (Residue Theorem). Let G ⊂ C be a domain, and let Γ be a contour
with interior contained in G. Let f be holomorphic in G except for isolated singularities
z1, . . . , zp, none of which lies on Γ. Then∫

Γ

f(z)dz = 2πi

p∑
k=1

indΓ(zk) reszk(f)

Proposition 10.9 (Cauchy Integral Formula). Let G ⊂ C be a domain, and let f : G→ C
be holomorphic, and let Γ be a simple contour with interior in G. Then

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0

dz

for z0 ∈ int Γ. More generally,

f (n)(z0) =
n!

2πi

∫
Γ

f(z)

(z − z0)n+1
dz

for z0 ∈ int Γ.

Proposition 10.10 (Argument Principle). Let G ⊂ C be a domain and let Γ be a simple
contour with interior contained in G. Let f : G → C be holomorphic and nonvanishing on
the trace of Γ. Then the number of zeroes of f in the interior of Γ (counting multiplicities)
is

1

2πi

∫
Γ

f ′(z)

f(z)
dz

Proposition 10.11 (Rouche’s Theorem). Let G ⊂ C be a domain, and let K ⊂ G be
compact. Let f, g : G→ C be holomorphic such that

|f(z)− g(z)| < |f(z)| ∀z ∈ ∂K

Then f, g have the same number of zeroes in the interior of K (counting multiplicities).

Proposition 10.12 (Hurwtiz’s Theorem). Let (fn)∞n=1 be a sequence of holomorphic func-
tions on a domain G converging locally uniformly in G to a nonconstant function f . If
f has at least m zeroes in G, then all but finitely many fn have at least m zeroes in G.
Consequently, if infinitely many fn are univalent (injective), then f is univalent.

Proposition 10.13 (Local Mapping Theorem). Let f be a nonconstant holomorphic func-
tion in the domain G. Let z0 ∈ G and let w0 = f(z0). Let m be the order of the zero of
f − w0 at z0. For every sufficiently small δ > 0, there exists ε > 0 such that every value w
satisfying 0 < |w − w0| < ε is assumed by f at exactly m distinct points in the punctured
disk 0 < |z − z0| < δ, with multiplicity 1 at each of those points.

Proposition 10.14 (Open Mapping Theorem). Let G be a domain, and let f : G → C be
holomorphic. Then f is an open map.

Proposition 10.15 (Local Inverses). If f is holomorphic and f ′(z0) 6= 0, then there is a
disk centered at z0 on which f is univalent.
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Proposition 10.16. A univalent holomorphic function has a nowhere vanishing derivative.

Proposition 10.17. The inverse of a univalent holomorphic function is holomorphic.

Proposition 10.18 (Stieltjes-Osgood Theorem). A locally uniformly bounded sequence of
holomorphic functions (on a domain in C) has a locally uniformly convergent subsequence.
(That is, it is a normal family.)

Proposition 10.19 (Arzela-Ascoli Theorem). Let X be a compact metric space, and let
C(X) be the space of continuous functions f : X → R. Then F ⊂ C(X) is equicontinuous
and pointwise bounded if and only if it is a normal family.

Proposition 10.20. If a domain is conformally equivalent to a simply connected domain,
then it is simply connected.

Proposition 10.21 (Riemann Mapping Theorem). Every simply connected domain in C
except for C itself is conformally equivalent to the unit disk. (That is to say, if G ⊂ C is not
equal to C, then there is a univalent holomorphic function f : D → G, where D is the open
unit disk.)
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