Theorems Complex analysis qualifying course MSU, Spring 2017

Joshua Ruiter

October 15, 2019

This document was made as a way to study the material from the spring semester complex analysis qualifying course at Michigan State University, in spring of 2017. It serves as a companion document to the "Definitions" review sheet for the same class. The textbook for the course was *Complex Function Theory*, by Donald Sarason, and these notes closely follow that text.

Contents

1	Chapter 1: Complex Numbers	2
2	Chapter 2: Complex Differentiation	2
3	Chapter 3: Linear Fractional Transformations	4
4	Chapter 4: Elementary Functions	5
5	Chapter 5: Power Series	6
6	Chapter 6: Complex Integration	8
7	Chapter 7: Core Versions of Cauchy's Theorem	9
8	Laurent Series and Isolated Singularities	12
9	Cauchy's Theorem	14
10	Residue Theorem and Riemann Mapping Theorem	15

1 Chapter 1: Complex Numbers

Proposition 1.1 (Basic Identities and Inequalities). Let $z, z_1, z_2, z_3 \in \mathbb{C}$. Let $z = x + iy = r(\cos \theta + i \sin \theta)$ and $z_k = x_k + iy_k = r_k(\cos \theta_k + i \sin \theta_k)$.

$$|z| = |\overline{z}| = \sqrt{z\overline{z}} \implies |z|^2 = z\overline{z}$$

$$\operatorname{Re} z = \frac{1}{2}(z + \overline{z})$$

$$\operatorname{Im} z = \frac{1}{2i}(z - \overline{z})$$

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad (conjugation \ is \ a \ field \ automorphism)$$

$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

$$|z_1 z_2| = |z_1||z_2|$$

$$|z_1 + z_2| \leq |z_1| + |z_2| \qquad (triangle \ inequality)$$

$$|z_1 + z_2 + \dots + z_n| \leq |z_1| + |z_2| + \dots + |z_n| \qquad (generalized \ triangle \ inequality)$$

$$|z_1 - z_2| \geq |z_1| - |z_2|$$

$$|z_1 + z_2|^2 + |\overline{z_1} + \overline{z_2}|^2 = 2\left(|z_1|^2 + |z_2|^2\right) \qquad (parallelogram \ equality)$$

$$z_1 z_2 = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)\right)$$

$$\arg \overline{z} = \arg(z^{-1}) = -\arg z$$

$$z^n = r^n(\cos n\theta + i\sin n\theta) \quad for \ n \in \mathbb{Z} \qquad (De \ Moivre's \ Formula)$$

$$z^{1/n} = r^{1/n} \left(\cos \frac{\theta + 2\pi k}{n} + i\sin \frac{\theta + 2\pi k}{n}\right) \quad for \ n \in \mathbb{N} \ and \ k = 0, 1, \dots, n-1$$

Proposition 1.2. Let $z_1, z_2 \in \mathbb{C} \setminus \{0\}$. Then they are positive multiples of each other if and only if $z_1\overline{z}_2$ is real and positive.

Proposition 1.3. Let p(x) be a polynomial with real coefficients. If p(z) = 0 for some $z \in \mathbb{C}$, then $p(\overline{z}) = 0$. (That is, the Galois group of \mathbb{C}/\mathbb{R} is just $\mathbb{Z}/2\mathbb{Z}$, the identity and complex conjugation.)

Proposition 1.4. Let $z \in \mathbb{C} \setminus \{1\}$. Then

$$\sum_{k=0}^{n} z^{k} = 1 + z + z^{2} + \dots + z^{n} = \frac{z^{n+1} - 1}{z - 1}$$

Proposition 1.5. The sum of the nth roots of 1 equals zero for $n \geq 2$.

2 Chapter 2: Complex Differentiation

Proposition 2.1 (Basic Properties of Complex Differentiation). Let f and g be complex-valued functions defined on an open set G.

1. If f is differentiable at z_0 , then f is continuous at z_0 .

- 2. (Leibniz rule) If f and g are differentiable at z_0 , then f + g and fg are differentiable at z_0 , and $(f + g)'(z_0) = f'(z_0) + g'(z_0)$ and $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$.
- 3. If f and g are differentiable at z_0 and $g(z_0) \neq 0$, then f/g is differentiable at z_0 . (There is a quotient rule, but just apply the product rule to $f\frac{1}{g}$.)
- 4. (Chain rule) If f is differentiable at z_0 and g is differentiable at $f(z_0)$, then the composition $g \circ f$ is differentiable at z_0 and $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$.

Proposition 2.2. Polynomial functions are holomorphic.

Proposition 2.3. Rational functions are holomorphic everywhere that their denominator is nonzero.

Proposition 2.4 (Cauchy-Riemann Equations). Let f(z) = f(x + iy) = u(x, y) + iv(x, y) be a complex function defined on an open set G containing z_0 . Then f is differentiable at z_0 if and only if u, v are differentiable at z_0 and

$$\frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0)$$
 and $\frac{\partial u}{\partial y}(z_0) = -\frac{\partial v}{\partial x}(z_0)$

In that case,

$$f'(z_0) = \frac{\partial u}{\partial x}(z_0) + i\frac{\partial v}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0) - i\frac{\partial u}{\partial y}(z_0)$$

Proposition 2.5. In polar form, the Cauchy-Riemann equations are

$$r\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta} \qquad \frac{\partial u}{\partial \theta} = -r\frac{\partial v}{\partial r}$$

Proposition 2.6. Let the complex-valued function f = u + iv be defined in the open subset $G \subset \mathbb{C}$, and assume that u and v have first partial derivatives in G. Then f is differentiable at each point where those partial derivatives are continuous and satisfy the Cauchy-Riemann equations.

Proposition 2.7. Let f be holomorphic in an open disk D. If any of the following hold for all $z \in D$, then f is constant in D: f'(z) = 0, $f(z) \in \mathbb{R}$, |f| = c, $\arg f = c$.

Proposition 2.8. Let f be holomorphic on the open set G. Then $\overline{f(\overline{z})}$ is holomorphic on $\{\overline{z}:z\in G\}$.

Proposition 2.9. A function f is differentiable at z_0 if and only if $\frac{\partial}{\partial \overline{z}}(z_0) = 0$.

Proposition 2.10. If f is differentiable at z_0 , then $f'(z_0) = \frac{\partial f}{\partial z}(z_0)$.

Proposition 2.11. Let f be holomorphic on an open set G and let $\gamma: I \to G$ be a curve such that γ is differentiable at t_0 , and let $z_0 = \gamma(t_0)$. Then the curve $f \circ \gamma: I \to f(G)$ is differentiable at t_0 and

$$(f \circ \gamma)'(t_0) = f'(\gamma(t_0))\gamma'(t_0) = f'(z_0)\gamma'(t_0)$$

Proposition 2.12 (Holomorphic Maps are Conformal where Derivative is Nonzero). Let f be holomorphic on an open set G and let $z_0 \in G$ such that $f'(z_0) \neq 0$. Let γ_1, γ_2 be curves such that $\gamma_1(t_1) = \gamma_2(t_2) = z_0$, and γ_j is regular at t_j . Then the angle between $f \circ \gamma_1$ and $f \circ \gamma_2$ is equal to the angle between γ_1 and γ_2 .

Proposition 2.13 (Conformal implies Holomorphic). Let $f: G \to \mathbb{C}$ where $G \subset \mathbb{C}$ is open, and suppose that Re f and Im f have continuous first partial derivatives. If f is conformal at each $z_0 \in G$, then f is holomorphic and $f' \neq 0$ in G.

Proposition 2.14. Let $f: G \to \mathbb{C}$. Then f is holomorphic if and only if its real and imaginary parts are harmonic.

Proposition 2.15. Holomorphic functions are harmonic.

Proposition 2.16. Let $u, v : G \to \mathbb{C}$ where $G \subset \mathbb{C}$ is open and suppose u, v are of class C^2 . Then u, v are harmonic conjugates if and only if u + iv is holomorphic.

3 Chapter 3: Linear Fractional Transformations

Proposition 3.1. The map $\mathbb{CP}^1 \to \overline{\mathbb{C}}$ given by $[z_1, z_2] \mapsto \frac{z_1}{z_2}$ is well-defined, and is a bijection. (The RHS is taken to be ∞ when $z_2 = 0$.)

Proposition 3.2. A linear fractional transformation gives a bijection $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$.

Proposition 3.3. Linear fractional transformations form a group under function composition. That is, LFTs are closed under composition and the inverse of a linear fractional transformation is a linear fractional transformation.

Proposition 3.4. Let ϕ_1, ϕ_2 be linear fractional transformations induced by matrices M_1, M_2 respectively. Then $\phi_1\phi_2$ is induced by M_1M_2 . If ϕ is a linear fractional transformation induced by M, then ϕ^{-1} is induced by M^{-1} . That is, the map

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \left(z \mapsto \frac{az+b}{cz+d} \right)$$

from $GL(2,\mathbb{C})$ to the group of LFTs is a group homomorphism. The kernel is

$$H = \{\lambda I_2 : \lambda \in \mathbb{C} \setminus \{0\}\}\$$

where I_2 is the identity of $GL(2,\mathbb{C})$. Thus the LFT group is isomorphic to

$$\mathrm{GL}(2,\mathbb{C})/H$$

Proposition 3.5. Every linear fractional transformation can be written as a product of a dilation, rotation, translation, and inversion. That is, the dilations, rotations, translations, and the inversion map generate the group of linear fractional transformations.

Proposition 3.6. Linear fractional transformations are conformal. Consequently, they are holomorphic and have a first derivative that never vanishes.

The next lemma seems very out of place, since it is purely topological. However, it is very useful when dealing with linear fractional transformations.

Lemma 3.7. Let X be a topological space, and $A \subset X$. Let $\phi : X \to X$ be a homeomorphism so that $\phi(A) = A$ and $\phi|_A : A \to A$ is a homeomorphism. Then $\phi(\partial A) = \partial A$ and $\phi|_{\partial A} : \partial A \to \partial A$ is a homeomorphism.

Corollary 3.8. Let ϕ be a linear fractional transformation, and let C be a clircle dividing \mathbb{C} into two disconnected regions X, Y. Since $\phi(C)$ is a clircle, it divides \mathbb{C} into two disconnected regions $\widetilde{X}, \widetilde{Y}$. Then $\phi|_X$ is a bijection $X \to \widetilde{X}$ or a bijection $X \to \widetilde{Y}$.

Intuitively speaking, the above result says that a linear fractional transformation that maps a given clirice to another clircle must map one "side" of the clircle in the domain to one "side" of the image clircle. (Where "side" refers to the inside/outside if it is a circle, and "side" refers to top/bottom or right/left if it is a line.)

Proposition 3.9. A linear fractional transformation has exactly one or two fixed points.

Proposition 3.10. Let z_1, z_2, z_3 be distinct poins in $\overline{\mathbb{C}}$, and w_1, w_2, w_3 be distinct points in $\overline{\mathbb{C}}$. There is a unique linear fractional transformation ϕ so that $\phi(z_i) = w_i$.

Proposition 3.11. Let z_1, z_2, z_3, z_4 be distinct points in $\overline{\mathbb{C}}$ and ϕ a linear fractional transformation. Then

$$(\phi z_1, \phi z_2; \phi z_3, \phi z_4) = (z_1, z_2; z_3, z_4)$$

Proposition 3.12. All translations except for translation by zero are mutually conjugate.

Proposition 3.13. Let f be a fractional linear transformation with a unique fixed point at ∞ . Then f is a translation.

Proposition 3.14. A linear fractional transformation with exactly one fixed point is conjugate to a translation.

Proposition 3.15. The image of a clircle under a linear fractional transformation is a clircle.

Proposition 3.16. Let z_1, z_2, z_3, z_4 be distinct points in $\overline{\mathbb{C}}$. They all lie on a clircle if and only if the cross ratio $(z_1, z_2; z_3, z_4)$ is real.

Proposition 3.17. A clircle is uniquely determined by three points.

4 Chapter 4: Elementary Functions

Proposition 4.1. Let $z_1, z_2 \in \mathbb{C}$. Then $e^{z_1}e^{z_2} = e^{z_1+z_2}$.

Proposition 4.2. The complex exponential is holomorphic. Its derivative is itself.

Proposition 4.3. If $f: \mathbb{C} \to \mathbb{C}$ is holomorphic and f' = f, then f is a constant multiple of e^z .

Proposition 4.4. All complex trigonometric and hyperbolic functions are holomorphic everywhere they are defined.

Proposition 4.5. Let $z \in \mathbb{C}$. Then

$$\cos z = \cosh iz$$
 $\sin z = -i \sinh iz$

Proposition 4.6. Let $z \in \mathbb{C} \setminus \{0\}$. If w is a logarithm of z, then $w = \ln |z| + i \arg z$.

Proposition 4.7. If f is holomorphic on a disk containing z_0 and $f(z_0) \neq 0$, then there is a branch of log f on a disk containing z_0 .

Proposition 4.8. Let G be an open connected subset of $\mathbb{C} \setminus \{0\}$. There exists a branch of arg in G if and only if there exists a branch of log in G.

Proposition 4.9. If α is a branch of arg z in G, then $\alpha + 2\pi n$ is another branch for any $n \in \mathbb{Z}$. Conversely, if α_1, α_2 are branches of arg in G, then they differ by an integer mulitple of 2π .

Proposition 4.10. If ℓ is a branch of $\log z$ in G, then $\ell + 2\pi in$ is another branch for any $n \in \mathbb{Z}$. Conversely, any two branches of ℓ in G differ by an integer multiple of $2\pi i$.

Proposition 4.11. Let ℓ be a branch of $\log z$ in the open connected set G. Then ℓ is holomorphic and $\ell'(z) = \frac{1}{z}$.

Proposition 4.12. If there is a branch of log f in G, then it is a holomorphic function and its derivative is $\frac{f'}{f}$.

Proposition 4.13. If h is a branch of $f^{1/n}$, then h is holomorphic and $\frac{h'}{h} = \frac{f'}{nf}$.

5 Chapter 5: Power Series

Proposition 5.1. If $\sum_{n=0}^{\infty} c_n$ converges then $\lim_{n\to\infty} c_n = 0$.

Proposition 5.2. Let $z \in \mathbb{C}$. The geometric series $\sum_{n=0}^{\infty} z^n$ converges to $\frac{1}{1-z}$ if |z| < 1 and diverges for $|z| \ge 1$.

Proposition 5.3. If $\sum_{n=0}^{\infty} c_n$ converges, then

$$\left| \sum_{n=0}^{\infty} c_n \right| \le \sum_{n=0}^{\infty} |c_n|$$

Proposition 5.4. If a series converges absolutely, then it converges.

Proposition 5.5. A series of functions converges uniformly on S if and only if it is uniformly Cauchy on S.

Proposition 5.6. Let g_n be a sequence of complex valued functions that converges uniformly on G. Then g_n converges uniformly on any subset of G.

Proposition 5.7. Let $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ be a power series. The region of convergence is either $\{z_0\}$, \mathbb{C} , or an open disk $|z-z_0| < R$, possibly including points on the boundary of that disk. If it converges on the disk $|z-z_0| < R$, then it converges absolutely and locally uniformly.

Proposition 5.8. Let $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n$ be power series with respective radii of convergence R_1, R_2 . If there exists M > 0 so that $|a_n| \leq M|b_n|$ for all but finitely many n, then $R_1 \leq R_2$.

Proposition 5.9. Let a_n be a sequence of real numbers. Then $\lim a_n$ exists if and only if $\lim \sup a_n = \lim \inf a_n$. If it exists, then $\lim a_n = \lim \sup a_n = \lim \inf a_n$.

Proposition 5.10. Let a_n, b_n be real sequences. Then

$$\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$$

provided the sum on the right is well-defined (that is, it isn't $\infty - \infty$). If either sequence converges, then we get equality.

Proposition 5.11. Let a_n, b_n be positive real sequences. Then

$$\limsup (a_n b_n) \le (\limsup a_n)(\limsup b_n)$$

as long as the product on the right is meaningful (i.e. not $0 \cdot \infty$). If either sequence converges, we get equality.

Proposition 5.12 (Cauchy-Hadamard Theorem). The radius of convergence of $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ is

$$\frac{1}{\limsup_{n\to\infty}|a_n|^{1/n}}$$

Proposition 5.13. Let $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n$ be power series with respective radii of convergence R_1, R_2 . The radius of convergence of $\sum_{n=0}^{\infty} (a_n + b_n) z^n$ is at least $\min(R_1, R_2)$. The radius of convergence of $\sum_{n=0}^{\infty} a_n b_n z^n$ is at least $R_1 R_2$ (as long as $R_1 R_2$ isn't $0 \cdot \infty$).

Proposition 5.14. A power series $\sum_{n=0}^{\infty} a_n z^n$ and its termwise derivative $\sum_{n=1}^{\infty} n a_n z^{n-1}$ have the same radius of convergence.

Proposition 5.15 (Ratio Test). *If*

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists, then the above limit is the radius of convergence of $\sum_{n=0}^{\infty} a_n(z-z_0)^n$.

Proposition 5.16. Suppose that the power series $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ has positive radius of convergence R. Then the function f represented by the above power series in the disk $|z-z_0| < R$ is holomorphic, and f' is represented in the same disk by the termwise derivative $\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$.

Proposition 5.17. A function represented by a power series in a disk $|z - z_0| < R$ is infinitely differentiable on that disk.

Proposition 5.18. The power series

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$

has infinite radius of convergence, and represents the function e^z on all of \mathbb{C} .

Proposition 5.19. Let $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ and $\sum_{n=0}^{\infty} b_n(z-z_0)^n$ be power series with the same center, both with positive radii of convergence R_1, R_2 respectively. Then their Cauchy product converges in the disk $|z-z_0| < \min(R_1, R_2)$. The function represented by the Cauchy product is the product of functions represented by the original series. That is,

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) (z - z_0)^n = \left(\sum_{n=0}^{\infty} a_n (z - z_0)^n \right) \left(\sum_{n=0}^{\infty} b_n (z - z_0)^n \right)$$

6 Chapter 6: Complex Integration

Proposition 6.1 (Linearity of Complex Integral). Let $\phi_1, \phi_2 : [a, b] \to \mathbb{C}$ be piecewise continuous and let $c_1, c_2 \in \mathbb{C}$. Then

$$\int_{a}^{b} c_1 \phi_1(t) + c_2 \phi_2(t) dt = c_1 \int_{a}^{b} \phi_1(t) dt + c_2 \int_{a}^{b} \phi_2(t) dt$$

Proposition 6.2 (Fundamental Theorem of Calculus). Let $\phi : [a, b] \to \mathbb{C}$ be piecewise C^1 . Then

$$\int_{a}^{b} \phi'(t)dt = \phi(b) - \phi(a)$$

Proposition 6.3. Let $\phi:[a,b]\to\mathbb{C}$ be piecewise continuous. Then

$$\left| \int_{a}^{b} \phi(t)dt \right| \le \int_{a}^{b} |\phi(t)|dt$$

Proposition 6.4 (Linearity of Complex Line Integral). Let $G_1, G_2 \subset \mathbb{C}$ and $f_1 : G_1 \to \mathbb{C}$ and $f_2 : G_2 \to \mathbb{C}$. Let $\gamma : [a, b] \to G_1 \cap G_2$ be piecewise C^1 , and $c_1, c_2 \in \mathbb{C}$. Then

$$\int_{\gamma} c_1 f_1(z) + c_2 f_2(z) dz = c_1 \int_{\gamma} f_1(z) dz + c_2 \int_{\gamma} f_2(z) dz$$

Proposition 6.5 (Partitioning of Curves of a Line Integral). Let $G \subset \mathbb{C}$ and $f : G \to \mathbb{C}$. Let $\gamma : [a, c] \to G$ be piecewise C^1 , and let $b \in [a, c]$. Define $\gamma_1 = \gamma|_{[a,b]}$ and $\gamma_2 = \gamma|_{[b,c]}$. Then

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$$

Proposition 6.6. Let $G \subset \mathbb{C}$ be open, and let $f: G \to \mathbb{C}$ be holomorphic, and assume that f' is continuous. Let $\gamma: [a,b] \to G$ be a piecewise C^1 curve. Then

$$\int_{\gamma} f'(z)dz = f(\gamma(b)) - f(\gamma(a))$$

In particular, if γ is a closed curve, then the above integral is zero.

Proposition 6.7. Let $z_0 \in \mathbb{C}$ and r > 0. Define $\gamma : [0, 2\pi] \to \mathbb{C}$ by $\gamma(t) = z_0 + re^{it}$. (Note that γ parametrizes the circle $|z - z_0| = r$ traversed once clockwise.) Then

$$\int_{\gamma} \frac{1}{(z-z_0)^n} dz = \begin{cases} 2\pi i & n=1\\ 0 & n \neq 1 \end{cases}$$

Proposition 6.8. Let $G \subset \mathbb{C}$ be open and $f: G \to \mathbb{C}$ and let $\gamma: [a, b] \to G$ be piecewise C^1 . Let $\gamma_1 = \gamma \circ \beta$ be a reparametrization of γ . Then

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz$$

Because of this equality, when speaking of an integral of a function over a curve, one is free to choose a convenient parametrization to compute the integral. (Note: Reversing the direction of a curve is NOT a reparametrization.)

Proposition 6.9. Reversing the direction of a curve changes the sign of the integral over that curve. That is,

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$$

Proposition 6.10. Let $G \subset \mathbb{C}$ and $f : G \to \mathbb{C}$ be continuous. Let $\gamma : [a, b] \to G$ be piecewise C^1 . Let M be the maximum of |f| on γ , that is,

$$M = \max\{|f(\gamma(t))| : t \in [a, b]\}$$

Note that M exists by the extreme value theorem becase the trace of γ is compact. Then

$$\left| \int_{\gamma} f(z) dz \right| \le ML(\gamma)$$

where $L(\gamma)$ is the length of γ .

Proposition 6.11 (Passing a Limit through an Integral). Let $G \subset \mathbb{C}$ and let $f_n : G \to \mathbb{C}$ be a sequence of continuous functions. Let $\gamma : [a,b] \to G$, and suppose that f_n converges uniformly to f on $\gamma([a,b])$. Then

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} \lim_{n \to \infty} f_n(z) = \int_{\gamma} f(z) dz$$

WARNING: Uniform convergence is necessary!

7 Chapter 7: Core Versions of Cauchy's Theorem

Proposition 7.1 (Cauchy's Theorem for Triangles). Let $G \subset \mathbb{C}$ be open, and let $f: G \to \mathbb{C}$ be holomorphic. Let T be a triangle in \mathbb{C} such that T and its interior are contained in G. Then

$$\int_T f(z)dz = 0$$

Note that this is subsumed by later, more general, versions of Cauchy's Theorem.

Proposition 7.2 (Cauchy's Theorem for a Star-Shaped Region). Let $G \subset \mathbb{C}$ be star shaped and open. Let $f: G \to \mathbb{C}$ be holomorphic. Let $\gamma: [a,b] \to G$ be a piecewise C^1 curve. Then

$$\int_{\gamma} f(z)dz = 0$$

Note that this is subsumed by later, more general, versions of Cauchy's Theorem.

Proposition 7.3. Let $G \subset \mathbb{C}$ be open and star shaped, and let $f: G \to \mathbb{C}$ be holomorphic. Then f has a primitive in G. (Later, we will only need G to be simply connected.)

Proposition 7.4 (Cauchy's Formula for a Circle). Let C be a counterclockwise oriented circle and let f be holomorphic on an open set containing C and its interior. Then

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{w - z} dw$$

for z in the interior of C. (That is, we can recover the value of f at the center of a circle from the values on the circle.)

Proposition 7.5 (Mean Value Property). Let f be holomorphic in the disk $|z - z_0| < R$. Then for 0 < r < R,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

That is, the value of f at the center of the circle $|z - z_0| = r$ is the average of the values along the circle.

Proposition 7.6 (Mean Value Property, 2). Let f be holomorphic in the disk $|z - z_0| < R$. Then for 0 < r < R,

$$f(z_0) = \frac{1}{\pi r^2} \iint_{|z-z_0| < r} f(z) \, dA$$

That is, the value of f at the center of the disk $|z - z_0| < r$ is equal to the average of the values of f on that disk.

Proposition 7.7 (Holomorphic functions have local power series representations). Let f be be holomorphic on an open set containing the disk $|z-z_0| < r$. Then there is a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ representing f in that disk. In particular, f is represented by its Taylor series:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

on $|z - z_0| < R$.

Proposition 7.8 (Cauchy Integral Formula). The derivative of a holomorphic function is holomorphic. In particular, if f is holomorphic on G, then for $|z - z_0| < r < \text{dist}(z_0, G^c)$ we have

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{C_r} \frac{f(w)}{(w-z)^{n+1}} dw$$

Consequently, if f has the local power series representation $\sum_{n=0}^{\infty} a_n(z-z_0)^n$, then

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{C_r} \frac{f(w)}{(w - z_0)^{n+1}} dw$$

Proposition 7.9 (Converse of Goursat's Lemma, sometimes called Morera's Theorem). Let f be a continuous complex valued function on an open subset G of \mathbb{C} . If $\int_T f(z)dz = 0$ for every triangle T with interior contained in G, then f is holomorphic.

Proposition 7.10 (Morera's Theorem for Rectangles). Let f be a continuous complex valued function on an open subset G of \mathbb{C} . If $\int_R f(z)dz = 0$ for every rectangle R with interior contained in G, then f is holomorphic.

Proposition 7.11 (Liouville's Theorem). If f is entire and bounded, then it is constant.

Proposition 7.12 (Fundamental Theorem of Algebra). Every nonconstant polynomial with complex coefficients can be factored over \mathbb{C} into linear factors.

Proposition 7.13. Let $f: G \to \mathbb{C}$ be holomorphic, and let $z_0 \in G$ be a zero of order m. Then the Taylor series of f centered at z_0 is

$$\sum_{n=m}^{\infty} a_n (z - z_0)^n$$

Proposition 7.14. Zeroes of finite order of holomorphic functions are isolated. That is, if z_0 is a zero of order m of a holomorphic function f, then there exists r > 0 so that $f(z) \neq 0$ for $z \in B(z_0, r)$.

Proposition 7.15. If $f: G \to \mathbb{C}$ has a zero of infinite order at z_0 , then f is the zero function on the connected component of G containing z_0 .

Proposition 7.16. Let $f: G \to \mathbb{C}$ be holomorphic with G connected, with f not the zero function. Then each zero of f is of finite order, and $f^{-1}(0)$ has no limit points in G.

Proposition 7.17. Let $f: G \to \mathbb{C}$ be holomorphic and have a zero of order m at z_0 . Then there is a branch of $f^{\frac{1}{m}}$ in a disk centered at z_0 .

Proposition 7.18 (Identity Principle). Let $f, g : G \to \mathbb{C}$ be holomorphic with G connected. If f(z) = g(z) for all z in a subset of G that has a limit point in G, then f = g.

Proposition 7.19 (Weierstrass Convergence Theorem). Let $G \subset \mathbb{C}$ be open and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of holomorphic functions in G that converges locally uniformly in G to the function f. Then f is holomorphic, and for each $n \in \mathbb{N}$, the sequence $\{f_k^{(n)}\}_{k=1}^{\infty}$ converges locally uniformly to $f^{(n)}$. That is, the locally uniform limit of holomorphic functions is holomorphic.

Proposition 7.20 (Maximum Modulus Principal). Let f be a nonconstant holomorphic function in the open connected set $G \subset \mathbb{C}$. Then |f| does not attain a local maximum in G. As a consequence, if $K \subset G$ is compact, then |f| attains its maximum over K only at points on the boundary of K.

Proposition 7.21. Let f be a nonconstant holomorphic function in the connected open subset $G \subset \mathbb{C}$. Then |f| can attain a local minimum only at a zero of f.

Proposition 7.22 (Schwarz's Lemma). Let f be a holomorphic map of the open unit disk to itself so that f(0) = 0. Then $|f(z)| \le |z|$ for all z in the disk. The inquality is strict at all points except 0, unless f is a rotation, i.e. $f(z) = \lambda z$ where $|\lambda| = 1$.

Proposition 7.23 (Existence of a Harmonic Conjugate on a Convex Set). Let u be a real-valued harmonic function in the convex open subset $G \subset \mathbb{C}$. Then there is a holomorphic function $g: G \to \mathbb{C}$ so that u = Re g. The function g is unique up to addition of an imaginary constant. (That is, Im g is a harmonic conjugate to u.)

Proposition 7.24. Harmonic functions are infinitely differentiable.

Proposition 7.25 (Mean Value Property for Harmonic Functions). Let $u: G \to \mathbb{C}$ be harmonic with $G \subset \mathbb{C}$ open. Let $z_0 \in G$. Then

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt$$

for $0 < r < \operatorname{dist}(z_0, G^c)$.

Proposition 7.26 (Identity Principle for Harmonic Functions). Let $G \subset \mathbb{C}$ be open and connected. Let $u, v : G \to \mathbb{C}$ be harmonic functions that agree on a nonempty open subset of G. Then u = v.

Proposition 7.27 (Maximum Modulus Priniple for Harmonic Functions). Let $G \subset \mathbb{C}$ be open an connected. Let $u: G \to \mathbb{R}$ be a nonconstant harmonic function. Then u does not attain a local maximum in G.

8 Laurent Series and Isolated Singularities

Note: Prof Schenker presented this material in a different order in class, giving a different definition for singularities, but it all turns out to be logically equivalent.

Proposition 8.1 (Generalized Cauchy-Hadamard Theorem). Consider the Laurent series $\sum_{n=-\infty}^{\infty} a_n(z-z_0)^n$ and let

$$R_1 = \limsup_{n \to \infty} |a_{-n}|^{1/n}$$
 $R_2 = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$

If $R_1 < R_2$, then the Laurent series converges absolutely and locally uniformly in the annulus $R_1 < |z - z_0| < R_2$.

Proposition 8.2. Consider the Laurent series $\sum_{n=-\infty}^{\infty} a_n(z-z_0)^n$ and let

$$R_1 = \limsup_{n \to \infty} |a_{-n}|^{1/n}$$
 $R_2 = \frac{1}{\limsup_{n \to \infty} |a_n|^{1/n}}$

For z such that $R_1 < |z-z_0| < R_2$ define $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$. Then f is holomorphic on the annulus. In addition, for r satisfying $R_1 < r < R_2$, let C_r denote the circle $|z-z_0| = r$, then

$$a_n = \frac{1}{2\pi i} \int_{C_r} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Proposition 8.3 (Cauchy's Theorem for Concentric circles). Let f be holomorphic in the annulus $R_1 < |z - z_0| < R_2$, and for $R_1 < r < R_2$ let C_r be the circle $|z - z_0| = r$ oriented counterclockwise. Then $\int_{C_r} f(z)dz$ is independent of r (for $R_1 < r < R_2$.)

Proposition 8.4 (Cauchy's Formula for an Annulus). Let f be holomorphic in the annulus $R_1 < |z - z_0| < R_2$, and for $R_1 < r < R_2$ let C_r be the circle $|z - z_0| = r$ oriented counterclockwise. If $R_1 < r_1 < |w - w_0| < r_2 < R_2$, then

$$f(w) = \frac{1}{2\pi i} \int_{C_{r_2}} \frac{f(z)}{z - w} dz - \frac{1}{2\pi i} \int_{C_{r_1}} \frac{f(z)}{z - w} dz$$

Proposition 8.5. Let f be holomorphic in the annulus $R_1 < |z - z_0| < R_2$. Then f has a Laurent series representation on that annulus.

Proposition 8.6 (Criterion for a Removable Singularity). Let f be holomorphic with an isolated singularity at z_0 . Then f is bounded in some punctured disk with center z_0 if and only if z_0 is a removable singularity.

Proposition 8.7 (Criterion for a Pole). Let f be holomorphic with an isolated singularity at z_0 . If

$$\lim_{z \to z_0} |f(z)| = \infty$$

then z_0 is a pole of f.

Proposition 8.8 (Casorati-Weierstrass Theorem). Let $f: G \to \mathbb{C}$ be holomorphic with an essential isolated singularity at z_0 . Then for any $w \in \mathbb{C}$, there is a sequence $(z_n)_{n=1}^{\infty}$ in G so that

$$\lim_{n \to \infty} z_n = z_0 \qquad \lim_{n \to \infty} f(z_n) = w$$

The above proposition says that functions behave very badly near essential singularities. It says that not only does not limit as $z \to z_0$ of f(z) not exist, it actually can take ANY value in \mathbb{C} , for a suitably chosen path.

The following result was not proven in our class, but is included in the book for interest's sake.

Proposition 8.9 (Picard's Theorem). Let f be holomorphic with an essential isolated singularity at z_0 . Then in any punctured disk centered at z_0 , the range of f includes every complex value infinitely many times, with possibly one exception.

Proposition 8.10. Let f, g be holomorphic on an open set containing z_0 and suppose g has a simple zero at z_0 . Then $\operatorname{res}_{z_0} \frac{f}{g} = \frac{f(z_0)}{g'(z_0)}$.

Proposition 8.11 (Computing a Residue at a Pole). Let f be holomorphic on an open set containing z_0 and let f have a pole of order k at z_0 . Then

$$\operatorname{res}_{z_0} f = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1}}{dz^{k-1}} \left[(z - z_0)^k f(z) \right]$$

In particular, if z_0 is a simple pole, (k = 1), then

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z)$$

Proposition 8.12 (Baby Residue Theorem). Let f be holomorphic with an isolated singularity at z_0 . Let C be a counterclockwise oriented circle centered at z_0 so that f is holomorphic on the punctured interior of C. Then

$$\int_C f(z)dz = 2\pi i \operatorname{res}_{z_0} f$$

We can rewrite this as

$$\operatorname{res} z_0 f = \frac{1}{2\pi i} \int_C f(z) dz$$

9 Cauchy's Theorem

Proposition 9.1. Let $\phi:[a,b] \to \mathbb{C} \setminus \{0\}$ be continuous. Then there is a continuous $\psi:[a,b] \to \mathbb{C} \setminus \{0\}$ so that $\phi=e^{\psi}$. Furthermore, ψ is unique up to addition integer multiples of $2\pi i$.

Proposition 9.2. Let $\phi:[a,b] \to \mathbb{C} \setminus \{0\}$ be piecewise C^1 . Let c be a value of $\log \phi(a)$. Then define $\psi:[a,b] \to \mathbb{C} \setminus \{0\}$ by

$$\psi(t) = c + \int_{a}^{t} \frac{\phi'(s)}{\phi(s)} dx$$

Then ψ is continuous and $\phi = e^{\psi}$.

Proposition 9.3. Let $\gamma:[a,b]\to\mathbb{C}$ be a piecewise C^1 curve and f holomorphic on an open set containing γ and nonvanishing on γ . Then

$$\Delta(\log f, \gamma) = \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

Proposition 9.4. Let $\gamma:[a,b]\to\mathbb{C}$ be a piecewise C^1 closed curve, and let z_0 be a point not in the trace of γ . Then

$$\operatorname{ind}_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz$$

Since the RHS is a continuous function of z_0 , and integer valued, it is constant on each connected component of $\mathbb{C} \setminus \gamma([a,b])$. In particular, the index must be zero on the unbounded component.

Proposition 9.5. Let $\Gamma = \sum_{j} n_j \gamma_j$ be a contour. Then

$$\operatorname{ind}_{\Gamma}(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z - z_0} dz$$

Proposition 9.6 (The Separation Lemma). Let $G \subset \mathbb{C}$ be open, and let $K \subset G$ be compact. Then there is a simple contour Γ in $G \setminus K$ such that $K \subset \operatorname{int} \Gamma \subset G$, and such that if f is holomorphic in G, then

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz$$

Proposition 9.7 (Cauchy's Theorem). Let $G \subset \mathbb{C}$ be open and let Γ be a contour with interior contained in G, and let $f: G \to \mathbb{C}$ be holomorphic. Then

$$\int_{\Gamma} f(z)dz = 0$$

(Keep in mind that Γ doesn't wind around anything outside G.)

Proposition 9.8. Let $\phi: [0,1] \times [0,1] \to \mathbb{C} \setminus \{0\}$ be continuous. Then there is a continuous $\psi: [0,1] \times [0,1] \to \mathbb{C}$ such that $\phi = e^{\psi}$. The function ψ is unique up to addition of integer multiples of $2\pi i$.

Proposition 9.9 (Homotopic Loops give Same Winding Number). Let $G \subset \mathbb{C}$ be open. Let γ_0, γ_1 be closed piecewise C^1 curves in G that are homotopic in G. Then $\operatorname{ind}_{\gamma_0}(z) = \operatorname{ind}_{\gamma_1}(z)$ for $z \in \mathbb{C} \setminus G$. (Note that it is important that $z \notin G$.)

Proposition 9.10 (Homotopy Version of Cauchy's Theorem). Let $G \subset \mathbb{C}$ be open and let $f: G \to \mathbb{C}$ be holomorphic. Let γ_0, γ_1 be closed piecewise C^1 curves in G that are homotopic in G. Then

 $\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$

10 Residue Theorem and Riemann Mapping Theorem

Proposition 10.1. Every star shaped domain is simply connected.

Proposition 10.2 (Winding Number Criterion). Let $G \subset \mathbb{C}$ be a domain. Then G is simply connected if and only if every contour Γ in G has winding number zero around every point in $\mathbb{C} \setminus G$.

Proposition 10.3 (Cauchy's Theorem for Simply Connected Domains). Let $G \subset \mathbb{C}$ be a simply connected domain, and let $f: G \to \mathbb{C}$ be holomorphic, and let Γ be a contour in G. Then

 $\int_{\Gamma} f(z)dz = 0$

Note that this is a special case of the Residue Theorem.

Proposition 10.4 (Existence of Primitive Criterion). Let $G \subset \mathbb{C}$ be a domain. Then G is simply connected if and only if every holomorphic function $f: G \to \mathbb{C}$ has a primitive.

Proposition 10.5 (Existence of Logarithms). Let $G \subset C$ be a simply connected domain, and let $f: G \to \mathbb{C} \setminus \{0\}$ be holomorphic. Then there is a branch of log f in G.

Proposition 10.6 (Existence of Harmonic Conjugates). Let $G \subset \mathbb{C}$ be a simply connected domain, and let $u: G \to \mathbb{R}$ be harmonic. Then u has a harmonic conjugate in G, which is unique up to an additive constant.

Proposition 10.7 (Partial Equivalence of Definitions of Simply Connected). Let $G \subset \mathbb{C}$ be a domain. If every closed curve in G is nullhomotopic, then G is simply connected. (The converse is also true, but proven later, using the Riemann Mapping Theorem.)

Proposition 10.8 (Residue Theorem). Let $G \subset \mathbb{C}$ be a domain, and let Γ be a contour with interior contained in G. Let f be holomorphic in G except for isolated singularities z_1, \ldots, z_p , none of which lies on Γ . Then

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{p} \operatorname{ind}_{\Gamma}(z_{k}) \operatorname{res}_{z_{k}}(f)$$

Proposition 10.9 (Cauchy Integral Formula). Let $G \subset \mathbb{C}$ be a domain, and let $f : G \to \mathbb{C}$ be holomorphic, and let Γ be a simple contour with interior in G. Then

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz$$

for $z_0 \in \text{int } \Gamma$. More generally,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

for $z_0 \in \operatorname{int} \Gamma$.

Proposition 10.10 (Argument Principle). Let $G \subset \mathbb{C}$ be a domain and let Γ be a simple contour with interior contained in G. Let $f: G \to \mathbb{C}$ be holomorphic and nonvanishing on the trace of Γ . Then the number of zeroes of f in the interior of Γ (counting multiplicities) is

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz$$

Proposition 10.11 (Rouche's Theorem). Let $G \subset \mathbb{C}$ be a domain, and let $K \subset G$ be compact. Let $f, g: G \to \mathbb{C}$ be holomorphic such that

$$|f(z) - g(z)| < |f(z)|$$
 $\forall z \in \partial K$

Then f, g have the same number of zeroes in the interior of K (counting multiplicities).

Proposition 10.12 (Hurwtiz's Theorem). Let $(f_n)_{n=1}^{\infty}$ be a sequence of holomorphic functions on a domain G converging locally uniformly in G to a nonconstant function f. If f has at least m zeroes in G, then all but finitely many f_n have at least m zeroes in G. Consequently, if infinitely many f_n are univalent (injective), then f is univalent.

Proposition 10.13 (Local Mapping Theorem). Let f be a nonconstant holomorphic function in the domain G. Let $z_0 \in G$ and let $w_0 = f(z_0)$. Let m be the order of the zero of $f - w_0$ at z_0 . For every sufficiently small $\delta > 0$, there exists $\epsilon > 0$ such that every value w satisfying $0 < |w - w_0| < \epsilon$ is assumed by f at exactly m distinct points in the punctured disk $0 < |z - z_0| < \delta$, with multiplicity 1 at each of those points.

Proposition 10.14 (Open Mapping Theorem). Let G be a domain, and let $f: G \to \mathbb{C}$ be holomorphic. Then f is an open map.

Proposition 10.15 (Local Inverses). If f is holomorphic and $f'(z_0) \neq 0$, then there is a disk centered at z_0 on which f is univalent.

Proposition 10.16. A univalent holomorphic function has a nowhere vanishing derivative.

Proposition 10.17. The inverse of a univalent holomorphic function is holomorphic.

Proposition 10.18 (Stieltjes-Osgood Theorem). A locally uniformly bounded sequence of holomorphic functions (on a domain in \mathbb{C}) has a locally uniformly convergent subsequence. (That is, it is a normal family.)

Proposition 10.19 (Arzela-Ascoli Theorem). Let X be a compact metric space, and let C(X) be the space of continuous functions $f: X \to \mathbb{R}$. Then $F \subset C(X)$ is equicontinuous and pointwise bounded if and only if it is a normal family.

Proposition 10.20. If a domain is conformally equivalent to a simply connected domain, then it is simply connected.

Proposition 10.21 (Riemann Mapping Theorem). Every simply connected domain in \mathbb{C} except for \mathbb{C} itself is conformally equivalent to the unit disk. (That is to say, if $G \subset \mathbb{C}$ is not equal to \mathbb{C} , then there is a univalent holomorphic function $f: D \to G$, where D is the open unit disk.)